Assessment Schedule - 2005

Mathematics: Use geometric reasoning to solve problems (90153)

Evidence Statement

ANGLES AROUND US

	Achievement Criteria	Q	Evidence	Code	Judgement	Sufficiency
Achievement	Use geometric reasoning to solve problems.	1 2 3	$\angle CDE = 119^{\circ}$ $\angle DEF = 105^{\circ}$ $\angle CAB = 68^{\circ}$	A A A	No alternative. No alternative. No alternative.	Achievement: 3 × code A.
Achievement with Merit Ac	Use, and state, geometric reasons in solving problems.	2	$ \frac{\angle \frac{(n-2)\times 180}{6}}{6} = 120 (\angle \text{ in a hexagon}) $ $ \frac{(n-2)\times 180}{8} = 135 (\angle \text{in an octagon}) $ $ \angle \text{DEF} = 360 - 120 - 135 = 105^{\circ} (\angle \text{s at a pt}) $ $ \mathbf{OR} $ $ \text{Ext } \angle \text{hexagon} = 60 $ $ \text{Ext } \angle \text{octagon} = 45 $ $ \angle \text{DEF} = 60 + 45 = 105^{\circ} $	A/M	chains of reasoning. EI' 2 × plu 2 × OR	Achievement with Merit: EITHER 2 × code A plus 2 × code M OR 3 × code M.
		4	\angle ABC = 56° – corr angles parallel lines \angle ACB = 56° – base angles of isosceles triangle \angle CAB = 68° – angles sum of triangle \angle BAD = 90° – tangent (and radius are perpendicular) \angle BCD = 90° – tangent (and radius are perpendicular) \angle ADC = 28° – interior angles of a quad add to 360°	A/M		
		5	∠CBD = 79° – alternate angles – parallel lines ∠CDB = 79° – base angles isosceles triangle ∠BCD = 22° – angle sum of triangle OR cointerior angles parallel lines	A/M		
		6	\angle ACB = \angle DFE – corresponding angles parallel lines \angle ABC = 56° – corresponding angles – parallel lines so ΔABC is similar to ΔDEF with scale factor $\frac{200}{245}$ EF = 274 × $\frac{200}{245}$ = 223.6735 mm	A/M		
			Alternative solution $\angle ACB = \angle DFE$ – corresponding angles parallel lines $\angle ABC = 56^{\circ}$ – corresponding angles – parallel lines so $\triangle ABC$ is similar to $\triangle DEF$ and is an isosceles triangle $EF = 2 \times 200 \cos 56 = 223.677$ mm			

	Achievement Criteria	Q	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve an extended geometric problem.	7	Let \angle CBD = α \angle OBD = 90 - α - tgt perp to radius \angle ODB = 90 - α - base angles isoc triangle equal radii \angle BOD = 2 α - angle sum of triangle \angle BED = α - angle at the circumference half that at the centre.	A/M/E	Allow other valid proofs.	Achievement with Excellence: As for Merit plus code E.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence		
Use geometric reasoning to solve problems.	Use, and state, geometric reasons in solving problems.	Solve an extended geometrical problem.		
3 × A	2 × A and 2 × M	Merit plus		
	or	1 × E		
	3 × M			